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Particle motion near and inside an interface
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The motion of a spherical particle near the interface between two immiscible viscous
fluids undergoing simple shear flow is considered in the limit of small Reynolds
and capillary numbers where the interface exhibits negligible deformation. Taking
advantage of the rotational symmetry of the boundaries of the flow with respect to the
axis that is normal to the interface and passes through the particle centre, the problem
is formulated as a system of one-dimensional integral equations for the first Fourier
coefficients of the unknown components of the traction and velocity along the particle
and interface contours. The results document the particle translational and angular
velocities, and reveal that the particle slips while rolling over the interface under the
influence of a simple shear flow, for any viscosity ratio. In the second part of the
investigation, the motion of an axisymmetric particle straddling a planar interface is
considered. The results confirm a simple exact solution when a particle with top-down
symmetry is immersed half-way in each fluid and translates parallel to the interface,
reveal a similar simple solution for a particle that is held stationary in simple shear
flow, and document the force and torque exerted on a spherical particle for more
general arrangements. The onset of a non-integrable singularity of the traction at
the contact line prohibits the computation of the translational and angular velocities
of a freely suspended particle convected under the action of a shear flow.

1. Introduction
Efforts to describe the motion and assess the significance of small particles, liquid

drops, and gas bubbles in two-phase and interfacial flow have led to studies of particle
motion near interfaces between two immiscible fluids. In some cases, the fluids are
quiescent and the flow is induced by the particle motion alone. In other cases, heavy,
buoyant, or freely suspended particles are convected in a specified flow. In most cases,
the motion occurs under conditions of Stokes flow due to the small particle size. In
the pioneering work of Aderogba (1976) and Aderogba & Blake (1978a, b), the flow
induced by a point force near a flat interface was computed in terms of singular
solutions of the equations of Stokes flow, and the particle-induced deformation of the
interface was displayed. This fundamental solution constitutes a building block for
describing the motion of distant particles using the method of reflections.

The majority of theoretical studies have addressed the flow induced by particle
motion in an otherwise quiescent environment. O’Neill & Ranger (1979), Lee,
Chadwick & Leal (1979), Lee & Leal (1980, 1982), and Berdan & Leal (1982)
studied the flow due to the translation and rotation of a sphere. Yang & Leal (1983)
and Fulford & Blake (1983) considered the motion of a slender particle resembling a
rod, and Yang & Leal (1989) studied the motion of a porous particle. Falade (1986)
generalized the asymptotic analysis to small particles with arbitrary shape and far-field
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flows. More recently, Danov et al. (1998) investigated the significance of interfacial
rheology and found that surface viscosity becomes important at small separations.

Less attention has been paid to the motion of freely-suspended particles convected
under the action of a shear, extensional, or more general flow. Yang & Leal
(1983, 1984) considered the motion of spherical and slender particles by asymptotic
expansions, and Stoos & Leal (1989) computed motions in axisymmetric elongational
flow. In a series of papers, Leal and coworkers studied corresponding problems
involving liquid drops (i.e. Yang & Leal 1990). Notable is the work of Yiantsios &
Davis (1990), who performed a lubrication-flow analysis for the motion of a drop
normal to an interface or plane wall. Configurations involving axisymmetric flows
considerably simplify the analysis by permitting the use of streamfunctions and the
application of effectively one-dimensional boundary integral representations.

A few authors considered the motion of particles straddling an interface in order to
describe the micromechanics of interfacial species transport and predict the surface
Brownian diffusivity in terms of the mobility using the Stokes–Einstein relationship.
Ranger (1978) considered the normal and tangential motion of a thin circular disk
straddling a planar interface between two immiscible liquids with arbitrary viscosities,
and O’Neill, Ranger & Brenner (1986) and Stoos & Leal (1990) considered the motion
of a spherical particle straddling a flat free surface. Danov, Dimova & Pouligny (2000)
investigated the motion of a particle straddling a spherical interface and incorporated
the effect of interfacial rheology. Their study was motivated by laboratory observations
of microspheres attached to vesicles reported by Velikov et al. (1997). In a personal
communication, Professor K. D. Danov pointed out that taking measurements of the
trajectories of tracers over an interface is the only available means for assessing the
rheology of structured interfaces and biological membranes. To interpret laboratory
data accurately, the resistance to the motion due to the bulk-phase viscosity must be
available.

When the boundary conditions specify a non-zero particle surface velocity normal
to the contact line, a non-integrable singularity in the stress arises, yielding an infinite
force. This strong singularity appears when a spherical particle rotates around an axis
that is parallel to the interface or is freely convected in simple shear flow, but not
when the particle translates parallel to the interface or is held stationary in a simple
shear flow. To prevent the divergence of the hydrodynamic stress, O’Neill et al. (1986)
replaced the no-slip boundary condition over the particle surface with the Navier
slip boundary condition. This regularization is physically acceptable in light of the
molecular size of the particles considered.

In § 2, we study the motion of a freely suspended spherical particle in simple
shear flow parallel to an interface between two fluids with arbitrary viscosities in the
limit of vanishing Reynolds number. The main objective is to compute the particle
translational and angular velocities for arbitrary particle-to-interface separations in
the limit of small capillary number where the interface deformation is small and can be
neglected to a first approximation. The numerical results extend previous asymptotic
solutions by Yang & Leal (1983, 1984) for large particle-to-interface separations and
illustrate the flow kinematics and interfacial deformation to leading order with respect
to the capillary number.

In § 3, we consider the motion of a spherical particle straddling a flat interface.
A symmetry argument suggests that the flow due to the in-plane translation of
an axisymmetric particle with up-to-down symmetry with respect to the interface
can be constructed in terms of the flow in infinite space using corresponding fluid
viscosities, in agreement with the results of Ranger (1978) and O’Neill et al. (1986).
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Figure 1. (a) Illustration of a spherical particle near a flat interface between two immiscible
viscous fluids undergoing simple shear flow. (b) Typical discretization of the particle and
interface contour in a meridional plane.

Examples of such shapes include the disk and the half-submerged sphere. A similar
symmetry argument suggests that superposition is also possible when the particle is
held stationary in an incident simple shear flow. Numerical results will be presented
for the force and torque exerted on the particle for more general configurations.

Accurate computations for both problems will become feasible by exploiting the
axial symmetry of the domain of flow to simplify the boundary integral representation
of the genuinely three-dimensional flow. The reduction yields a system of one-
dimensional integral equations for the first Fourier coefficients of the boundary
traction and free-surface velocity defined over the various boundary contours in a
meridional plane. The solution can be solved accurately and efficiently by elementary
boundary element methods. Although a similar methodology has been used previously
to compute flow past surfaces with axisymmetric irregularities in the form of a particle,
a depression, or a protrusion and the motion of a particle in film flow (Pozrikidis
1994a, b, 1997b, 2000, 2006; Matzen 1997; Shatz 2004), the implementation for
interfacial flow is a new adventure.

2. A spherical particle near an interface
We consider the steady motion of a spherical particle of radius a near the planar

interface between two viscous fluids undergoing simple shear flow (figure 1). The upper
fluid is designated by the index 1, and the lower fluid is designated by the index 2.
The x-axis is perpendicular to the interface and passes through the particle centre, the
y-axis points in the direction of the incident shear flow, and the z-axis is orthogonal
to both. Far from the particle, the velocity field designated by the superscript ∞ is
given by u∞

x =0, u∞
y = kix, and u∞

z = 0, where ki is the shear rate in the ith fluid.
Continuity of shear stress at the interface requires k1 = λk2, where λ= µ2/µ1 is the
ratio of the fluid viscosities. We will assume that the particle is neutrally buoyant
so that gravity does not drive it toward or away from the interface. The combined
gravity- and shear-driven motion can be constructed by linear superposition.

The particle generates a disturbance flow, denoted by the superscript D, that may
be added to the simple shear flow to yield the total flow with velocity u = u∞ +uD and
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pressure p = p∞ + pD . Near the particle, the simple shear flow and the disturbance
flow have comparable magnitudes. The Reynolds number written with respect to the
particle size is assumed to be sufficiently small that the motion of the fluid is governed
by the equations of Stokes flow,

−∇p + µ∇2u + ρg = 0, ∇ · u = 0, (2.1)

where ρ is the fluid density and g is the acceleration of gravity, assumed to be
normal to the interface. The no-slip and no-penetration boundary conditions require
u = V +Ω × (x − xc) over the particle surface, where V is the velocity of translation of
the particle centre, xc = (xc, 0, 0), and Ω is the angular velocity of rotation about xc.
Analogous boundary conditions require that the fluid velocity is continuous across
the interface. In the absence of surfactants, the shear stress is continuous across
the interface, n × � f × n = 0, where �q = q1 − q2 denotes the interfacial jump of the
variable q , f ≡ σ · n is the traction, σ is the stress tensor in each fluid, and n is the
unit normal vector pointing into the upper fluid labelled 1. The normal stress suffers
a discontinuity determined by the surface tension, γ , given by � f · n =2κmγ n, where
κm is the mean curvature computed from 2κm = ∇s · n, ∇s = (I−nn) · ∇ is the tangential
gradient, and I is the identity matrix.

We restrict our attention to situations where the surface tension is strong enough
to prevent significant deformation of the interface from the undisturbed flat shape.
The formal requirement is that the capillary number, Ca = µ1k1a/γ , be sufficiently
small. To derive appropriate boundary conditions, we describe the interface as
x = η(y, z) = a Ca φ(y, z), where φ(y, z) is a dimensionless shape function, and expand
the velocity, stress, and normal vector in perturbation series with respect to Ca,

u = u∞ + uD(0) + Ca uD(1) + · · · , σ = σ ∞ + σD(0) + Ca σD(1) + · · · ,
n = ex + Ca n(1) + · · · ,

}
(2.2)

where ex is the unit vector along the x axis. Next, we shift the interface from the
actual location to the undisturbed position and transfer the boundary conditions
using the method of domain perturbation. When the particle translates parallel to the
interface, the interfacial shape as seen by an observer travelling with the particle is
stationary and the normal velocity component vanishes, (u(x = η)−V ) · n = 0. Making
substitutions, we find(

u∞(x = 0) + uD(0)(x = 0) − V
)

· ex + O(Ca) = 0, (2.3)

yielding uD(0)
x ∼ O(Ca) for both fluids. Next, we consider the dynamic boundary

condition (�σ ) · n = 2κmγ n, approximate the mean curvature with 2κm � −∇2η (e.g.
Pozrikidis 1997a), and work in a similar fashion to find(

�σ ∞(x = 0) + �σD(0)(x = 0)
)

· ex + O(Ca) = −µ1k1a
2∇2φex + O(Ca), (2.4)

where ∇2 is the Laplacian with respect to y and z. Thus,

�f D(0)
x = −µ1k1a

2∇2φ + O(Ca), �f D(0)
y ∼ O(Ca) �f D(0)

z ∼ O(Ca), (2.5)

where �f D(0)
x ≡ �σD(0)(x = 0) · ex . In summary, the x velocity component and the y

and z traction components of the leading-order disturbance flow are zero over the flat
interface. The kinematic condition of zero normal velocity replaces the usual dynamic
condition requiring that the normal component of the traction jump be balanced
by the capillary force due to the surface tension. In the remainder of the paper, the
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superscript (0) will be suppressed, and the disturbance flow will be tacitly identified
with its leading-order component.

2.1. Boundary integral formulation

To compute the solution, we use the boundary integral formulation for Stokes flow.
We begin by expressing the disturbance velocity at a point x0 that lies in the upper
fluid labelled 1 in terms of integrals over the particle surface, P , and interface, I , as

uD(x0) = − 1

8πµ1

S(x0, f D, P ) − 1

8πµ1

S
(

x0, f D
1 , I

)
+

1

8π
D(x0, uD, P )

+
1

8π
D(x0, uD, I ). (2.6)

We have introduced the single- and double-layer potentials of Stokes flow defined
over a generic surface, D,

Sj (x0, f , D) ≡
∫∫

D

fi(x) Gij (x, x0) dS(x),

Dj (x0, u, D) ≡
∫∫

D

ui(x) Tijk(x, x0) nk(x) dS(x),

⎫⎪⎪⎬
⎪⎪⎭ (2.7)

where

Gij (x, x0) =
δij

r
+

x̂i x̂j

r3
, Tijk(x, x0) = −6

x̂i x̂j x̂k

r5
, (2.8)

are the free-space Green’s function and associated stress tensors, x̂ = x − x0, r = |x̂|,
and δij is Kronecker’s delta (e.g. Pozrikidis 1992). Next, we apply the reciprocal
identity for the simple shear flow in the upper fluid over the particle volume to obtain

0 = − 1

8πµ1

S(x0, f ∞, P ) +
1

8π
D(x0, u∞, P ). (2.9)

Adding (2.6) to (2.9), we find

uD(x0)=− 1

8πµ1

S(x0, f , P )− 1

8πµ1

S
(

x0, f D
1 , I

)
+

1

8π
D(x0, u, P ) +

1

8π
D(x0, uD, I ).

(2.10)

Because the velocity over the particle surface expresses rigid-body motion, the
penultimate integral on the right-hand side is zero, yielding the simplified
representation

uD(x0) = − 1

8πµ1

S(x0, f , P ) − 1

8πµ1

S
(

x0, f D
1 , I

)
+

1

8π
D(x0, uD, I ). (2.11)

Now using the reciprocal theorem for the disturbance flow in the lower fluid, we find

0 = − 1

8πµ2

S
(

x0, f D
2 , I

)
+

1

8π
D(x0, uD, I ), (2.12)

where x0 still lies in the upper fluid labelled 1. Combining (2.11) and (2.12) to form
the jump in traction across the interface, � f D = f D

1 − f D
2 , which is also equal to the

jump in the physical traction, � f = f 1 − f 2, we find

uD(x0) = − 1

8πµ1

S(x0, f , P ) − 1

8πµ1

S(x0, � f , I ) +
1 − λ

8π
D(x0, uD, I ). (2.13)
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For a point x0 located in the lower fluid we find an identical expression, except that
the each term on the right-hand side is divided by the viscosity ratio, λ.

Applying (2.13) at the particle surface, enforcing the rigid-body-motion boundary
condition and rearranging, we find

S(x0, f , P ) + S(x0, � f , I ) − µ1(1 − λ) D(x0, uD, I )

= −8πµ1 [V + Ω × (x0 − xc) − u∞(x0)], (2.14)

where the point x0 lies on P . Next, we take the limit of (2.13) as the evaluation point
x0 approaches the interface, and use the identity

lim
x0→I

D(x0, uD, I ) = DPV (x0, uD, I ) + 4πu(x0), (2.15)

where PV denotes the principal-value integral. The principal value of the double-layer
potential is identically zero due to the vanishing of the kernel, Tijk , yielding

S(x0, f , P ) + S(x0, � f , I ) + 4πµ1(1 + λ)uD(x0) = 0, (2.16)

where the point x0 lies on I .
We have derived a system of six scalar equations for the three components of the

traction over the particle surface, the normal component of the traction over the inter-
face, and the two tangential components of the disturbance velocity over the interface.
Solving these integral equations directly presents significant numerical challenges
concerning the adequate discretization of the particle surface and interface and the
accurate evaluation of the singular boundary integrals required in the boundary
element method.

2.2. Fourier expansion

Because the interface is assumed to be virtually flat, the boundaries of the flow,
but not the flow itself, are axially symmetric with respect to the x-axis. This
geometrical property allows us to simplify the problem by expressing the cylindrical
polar components of the left- and right-hand sides of (2.14) and (2.16) in Fourier
series with respect to the meridional angle, ϕ, defined such that y = σ cosϕ and
z = σ sin ϕ, as shown in figure 1(a), where σ is the distance from the x-axis. Since we
are interested in a freely suspended particle, we set Vx , Vz, Ωx , and Ωy to zero and
obtain

V + Ω × (x − xc) − u∞ = −Ωzσ cos ϕex + W (x) cos ϕeσ − W (x) sin ϕeϕ, (2.17)

where ex , eσ , eϕ , are unit vectors, and

W (x) = Vy + Ωz (x − xc) − u∞
y (x). (2.18)

Motivated by this form, we express the velocity as

u = Vx cos ϕex + Vσ cos ϕeσ − Vϕ sinϕeϕ, (2.19)

and the boundary traction as

f = Fx cos ϕex + Fσ cosϕeσ − Fϕ sinϕeϕ, (2.20)

where the coefficients Vα and Fα are functions of x and σ . The y component of the
force and the z component of the torque exerted on the particle are given by

Fy = π

∫
CP

(Fσ + Fϕ) σ dl, Tz = π

∫
CP

((x − xc)(Fσ + Fϕ) − σFx) σ dl, (2.21)
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where CP is the particle contour in the ϕ = 0 meridional plane consisting of half the
xy plane, and l is the arclength along CP . All other components of the force and
torque are zero.

Substituting (2.20) in the cylindrical polar components of the single-layer potential
and simplifying, we find

⎡
⎣Sx

Sσ

Sϕ

⎤
⎦ (x0) =

∫
CP

⎡
⎢⎣

cos ϕ0(ΨxxFx + Ψxσ Fσ + ΨxϕFϕ)

cos ϕ0(ΨσxFx + Ψσσ Fσ + ΨσϕFϕ)

−sinϕ0(ΨϕxFx + Ψϕσ Fσ + ΨϕϕFϕ)

⎤
⎥⎦ dl. (2.22)

Straightforward algebra yields the 3 × 3 kernel matrix

Ψαγ (x0, x) = σ

⎡
⎢⎣

I11 + x̂2I31 x̂(σI31 − σ0I32)

x̂(σI32 − σ0I31) I12 +
(
σ 2 + σ 2

0

)
I32 − σσ0(I33 + I31)

x̂σ (I30 − I32) I10 − I12 + σ 2(I30 − I32) − σσ0(I31 − I33)

x̂σ0(I32 − I30)

I10 − I12 + σ 2
0 (I30 − I32)

x̂σ (I30 − I32)I12 + σσ0(I31 − I33)

⎤
⎥⎦ , (2.23)

where

Imn =

∫ 2π

0

cosn ω dω[
x̂2 + σ 2 + σ 2

0 − 2σσ0 cos ω
]m/2

=
4wm

(4σσ0)m/2

∫ π/2

0

(2 cos2 ω − 1)n

(1 − w2 cos2 ω)m/2
dω,

(2.24)

and w2 = 4σσ0/[x̂
2 + (σ + σ0)

2]. These integrals can be expressed in terms of complete
elliptic integrals of the first and second kind using standard mathematical tables. The
elliptic integrals may then be evaluated with high accuracy using standard library
functions or iterative methods.

Over the interface located at x = 0, the unit normal vector points along the x-axis
and the double-layer potential takes the form

Dj (x0, u, I ) = −6x̂

∫∫
I

ux x̂ + uy ŷ + uz ẑ[
x2

0 + ŷ2 + ẑ2
]5/2

(x − x0)j dS(x)

= −6x̂

∫∫
I

ux x̂ + uσ (σ − σ0 cos ϕ̂) + uϕσ0 sin ϕ̂(
x2

0 + σ 2 + σ 2
0 − 2σσ0 cos ϕ̂

)5/2
(x − x0)j dS(x), (2.25)

where ϕ̂ = ϕ − ϕ0. The associated cylindrical polar components are⎡
⎣Dx

Dσ

Dϕ

⎤
⎦ (x0, u, I ) = −6x̂

∫∫
I

ux x̂ + uσ (σ − σ0 cos ϕ̂) + uϕσ0 sin ϕ̂(
x2

0 + σ 2 + σ 2
0 − 2σσ0 cos ϕ̂

)5/2

×

⎡
⎣ x̂

σ cos ϕ̂ − σ0

σ sin ϕ̂

⎤
⎦ dS(x). (2.26)
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Substituting (2.19) in (2.26) we obtain⎡
⎢⎣

Dx

Dσ

Dϕ

⎤
⎥⎦ (x0) =

∫
CI

⎡
⎢⎣

cosϕ0(KxxVx + Kxσ Vσ + KxϕVϕ)

cos ϕ0(KσxVx + Kσσ Vσ + KσϕVϕ)

−sinϕ0(KϕxVx + Kϕσ Vσ + KϕϕVϕ)

⎤
⎥⎦ dx, (2.27)

where CI is the trace of I in a meridional plane. Straightforward algebra yields the
3 × 3 kernel matrix

Kαβ(x0, x) = −6σ x̂

⎡
⎣ x̂2I51 x̂(σI51 − σ0I52)

x̂(σI52 − σ0I51)
(
σ 2 + σ 2

0

)
I52 − σσ0(I51 + I53)

x̂σ (I50 − I52) σ 2(I50 − I52) + σσ0(I53 − I51)

x̂σ0(I52 − I50)
σσ0(I53 − I51) − σ 2

0 (I52 − I50)
σσ0(I51 − I53)

⎤
⎦ . (2.28)

Substituting the expressions for the single- and double-layer potential in (2.13), we
derive an integral representation for the Fourier coefficients,

VD
α (x0) = − 1

8πµ1

∫
CP

Ψαβ(x0, x)Fβ(x) dl(x) − 1

8πµ1

∫
CI

Ψαβ(x0, x)�Fβ(x) dl(x)

+
1 − λ

8π

∫
CI

Kαδ(x0, x)VD
δ (x) dl(x), (2.29)

where the point x0 lies in the upper fluid and δ runs over σ and ϕ. Substituting in
(2.14), we obtain the integral equation∫

CP

Ψαβ(x0, x)Fβ(x) dl(x) +

∫
CI

Ψαβ(x0, x)�Fβ(x) dl(x)

− µ1(1 − λ)

∫
CI

Kαδ(x0, x)VD
δ (x) dl(x) = −8πµ1(−Ωzσ0δαx + W (x0)δασ + W (x0)δαϕ),

(2.30)

where the point x0 lies on CP . Finally substituting in (2.15), we obtain the integral
equation∫

CP

Ψαβ(x0, x)Fβ(x) dl(x) +

∫
CI

Ψαβ(x0, x)�Fβ(x) dl(x) + 4πµ1 (1 + λ) VD
α (x0) = 0,

where the point x0 lies on CI . The boundary conditions require �Fσ = 0, �Fϕ = 0
and VD

x = 0 over the interface.
The solution for the x component of the traction jump across the interface can

be used to deduce the interfacial deformation to leading order with respect to the
capillary number, Ca. Describing the interface as x = a Ca φ(y, z) = a Ca cosϕΦ(σ ),
and substituting in (2.5), we derive an inhomogeneous Bessel-like ordinary differential
equation

1

σ

d

dσ

(
σ

dΦ

dσ

)
− Φ

σ 2
=

d

dσ

(
1

σ

d(σΦ)

dσ

)
= − �Fx

µ1k1 a2
, (2.31)

where Φ is a dimensionless function, and the right-hand side is known in numerical
form. The boundary conditions specify the regularity and far-field conditions Φ(0) = 0
and Φ(∞) = 0.
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2.3. Numerical method

To solve the integral equations, we divide the boundary contours in the ϕ =0
meridional plane into straight elements over the interface and circular elements
over the particle, and approximate the Fourier coefficients with constant functions
over each element. For improved accuracy, the elements are concentrated near the
axis of symmetry, with their length increasing geometrically with distance from the
axis of symmetry, as depicted in figure 1(b). The interface is truncated at a radial
distance equal to forty-eight times the particle separation from the interface, xc. Next,
we apply point collocation at the mid-point of each element and compile a system of
linear equations for the unknown solution vector:[

(Fx)P (�Fx)I
∣∣(Fσ )P

(
VD

σ

)
I

∣∣(Fϕ)P
(
VD

ϕ

)
I

]
, (2.32)

where the vector block (Fx)P contains the x component of the traction over the
particle elements, and the rest of the blocks are defined in similar ways. The entries
of the coefficient matrix are computed by the six-point Gauss–Legendre quadrature
with special attention paid to the logarithmic singularity occurring at the diagonal
components of the single-layer kernel, Ψαα . In the case of a freely suspended particle,
the translational and angular velocities Vy and Ωz are appended to the vector of
unknowns, and two more equations are introduced expressing the vanishing of Fy

and Tz. The solution of equation (2.31) is found by a standard finite volume method
applied to the differential expression on the left-hand side.

The numerical method was validated by various tests and comparisons with the
predictions of previous authors. In one case study, comparisons were made with the
results of Lee & Leal (1980) who studied the translation and rotation of a spherical
particle near the interface between two quiescent fluids by separation of variables in
bipolar coordinates. Our computations for particle position xc/a = 1.1 and viscosity
ratio λ= 10 with 64 particle elements and 128 interfacial elements predict the reduced
particle force and torque Fy/(6πµ1aVy) = −1.820 and Tz/(8πµ1a

2Vy) = 0.0192. These
values compare favourably with those given in table 2 and 3 of the previous authors,
respectively, −1.82067 and 0.0192084. For xc/a = 1.2 and λ= 0.1 and same number
of boundary elements, we find the reduced force and torque −0.796 and −0.0896,
which agree well with the values −0.795140 and −0.0892500 reported by the previous
authors. The numerical results discussed in the remainder of this section are estimated
to carry an error on the order of ±0.001.

2.4. Results and discussion

As a preliminary, we consider flow past a spherical particle that is held stationary
in simple shear flow above the interface. Figure 2(a, b) shows the distribution of
the traction coefficients along the particle contour and the distribution of the
disturbance traction and velocity coefficients along the interface for xc/a = 1.1276
and viscosity ratio λ= 5. The traction coefficients have been reduced by µ1k1, and
the velocity coefficients have been reduced by k1a. The solid lines representing the
x Fourier coefficient tend to zero at the axis of symmetry in both graphs, while the
corresponding σ and ϕ coefficients tend to common limits, as required for a single-
valued solution. Figure 2(c) illustrates the velocity vector field over the interface,
showing the occurrence of backflow, and figure 2(d) illustrates the deformation of the
interface computed by solving the Bessel-like equation derived in the previous section.
We observe the formation of a localized peak and a localized depression, respectively,
upstream and downstream of the particle centre. Figure 3 shows corresponding results
for a fluid pair with low viscosity ratio, λ= 0.1. Although the general features of the
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Figure 2. Shear flow past a spherical particle held stationary at a distance xc/a =1.1276 above
the interface, for viscosity ratio λ= 5. (a) Distribution of the particle traction coefficients Fx

(solid line), Fσ (dashed line), Fϕ (dotted line), with respect to arclength measured from the
axis of symmetry farthest from the wall. (b) Distribution of the interface traction coefficient
(1/5)�FD

x (solid line), and velocity coefficients VD
σ (dashed line), VD

ϕ (dotted line), with
respect to arclength measured from the axis of symmetry. (c) Disturbance velocity vector field
over the interface, and (d) deformed shape of the interface.

flow are similar to those presented in figure 2 for the high viscosity ratio, close
inspection reveals that the disturbance flow spreads over a greater distance owing to
the increased mobility of the lower fluid.

The dimensionless force exerted on the particle is defined as F̂ y ≡ Fy/(6πµ1k1xca),

and the dimensionless torque is defined as T̂z ≡ Tz/(4πµ1k1a
3). Numerical results for

xc/a = 1.1276 are shown in table 1 for a range of viscosity ratios. As λ→ ∞, the
two sequences converge to limits identified by Goldman, Cox & Brenner (1967) for a
sphere held stationary in shear flow above a plane wall. The symbols in figure 4(a)
trace the graph of the computed force and torque, both reduced by the limiting
values for λ= ∞, plotted against the parameter (1 − λ)/(1 + λ), which varies in the
finite range [−1, 1]. We observe that the force exhibits a mild dependence, whereas
the torque exhibits a much stronger dependence on the viscosity ratio. As λ tends to
zero, the force and torque tend to well-defined limits corresponding to motion near a
free surface.
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Figure 3. As figure 2 but for λ= 0.1.

λ 0.1 0.5 1 2.3 5 10 50 100 500 1000 ∞

F̂ y 0.850 0.939 1.021 1.159 1.305 1.419 1.565 1.589 1.610 1.612 1.6160

T̂z 0.999 1.019 1.028 1.030 1.017 0.998 0.967 0.961 0.956 0.956 0.95374

Table 1. Dimensionless force, F̂ y ≡ Fy/(6πµ1k1xca), and dimensionless torque, T̂z ≡ Tz/
(4πµ1k1a

3), exerted on a spherical particle that is held stationary at a distance xc/a =1.1276
above the interface in simple shear flow, listed as a function of the viscosity ratio. When the
viscosity ratio is infinite, the particle is suspended in simple shear flow above a plane wall.

Yang & Leal (1984) determined that the force and torque exerted on a small sphere
far from the interface are given by the asymptotic expansions

F̂ y = 1 − ∆+ ∆2 − ∆3 − 1 + 2λ

16(1 + λ)
δ3 + δ2 2 − 5λ

16(1 + λ)
(1 − ∆) + O(δ4),

T̂z = 1 +
3

8

δ

1 + λ
(1 − ∆− δ2) + O(δ4),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.33)

where δ = a/xc, ∆= αδ, and α = 3(2 − 3λ)/[16(1 + λ)]. Note that, as λ→ ∞, the
correction to the torque becomes at least quartic with respect to δ, and is therefore
inadequately described by the third-order perturbation expansion. The dashed and
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Figure 4. (a) Force, Fy , (circles and dashed lines), and torque, Tz, (squares and dotted lines),
exerted on a sphere held stationary above an interface at a distance xc/a = 1.1276 in simple
shear flow, reduced by the corresponding values for an immobilized lower fluid, λ = ∞. (b–d)
Reduced force F̂ y (circles) and torque T̂z (squares) plotted against the particle distance from
the interface for (b) λ= 0.1, (c) 1, and (d) 10. In all graphs, the dotted and dashed lines without
symbols represent the asymptotic predictions for distant particles.

dotted lines without symbols in figure 4(a) represent these asymptotic predictions.
The deviation of the asymptotic from the numerical results is surprisingly small
considering that the particle is so close to the interface. Figures 4(b), 4(c) and 4(d)
display our numerical results for the force and torque plotted against the particle
centre position for viscosity ratios λ= 0.1, 1, and 10. The agreement between these
results and the asymptotic predictions represented by the dashed and dotted lines is
good even for small particle-to-interface separations.

Next, we consider the velocity of translation and angular velocity of rotation of a
freely suspended particle. Figures 5 and 6 illustrate the distribution of the traction
along the particle contour, the distribution of the disturbance traction and velocity
along the interface, the velocity vector field over the interface, and the deformation
of the interface, for xc/a =2 and λ= 5 and 0.1. The traction coefficients have been
reduced by µ1k1, and the velocity coefficients have been reduced by k1a. The viscosity
ratio has an important effect on the distribution of traction and velocity over the
interface, and the structure of the flow differs substantially from that described
previously for a stationary particle. However, as in the case of the stationary particle,



Particle motion near and inside an interface 345

(a) (b)

(c) (d)

0 0.2 0.4 0.6 0.8 1.0
–3

–2

–1

0

1

2

3

s/(π a)

P
ar

ti
cl

e 
tr

ac
ti

on

0 2 4 6 8 10

–0.2

0

s/a

In
te

rf
ac

e 
tr

ac
ti

on
/v

el
oc

it
y

–4 –2 0 2 4

–3

–2

–1

0

1

2

3

y/a

z–a

–1.0 –5 0 5 10 –10
0

10–1.5

–1.0

–0.5

0

0.5

1.0

1.5

z/a
y/a

φ

Figure 5. Flow past a freely suspended particle located at a distance xc/a = 2 above the
interface, for viscosity ratio λ= 5. (a) Distribution of the particle traction coefficients Fx (solid
line), Fσ (dashed line), Fϕ (dotted line), plotted with respect to arclength measured from the
axis of symmetry farthest from the wall. (b) Distribution of the interface traction coefficient
(1/5)�FD

x (solid line), and velocity coefficients VD
σ (dashed line), VD

ϕ (dotted line), plotted
with respect to arclength measured from the axis of symmetry. (c) Disturbance velocity vector
field over the interface, and (d) deformed shape of the interface.

an interfacial peak and a depression develop, respectively, upstream and downstream
of the particle centre.

Computations for xc/a = 1.1276 and a sequence of viscosity ratios yielded the
values for the translational and angular velocities given in table 2. As λ→ ∞, the
two sequences converge to limits identified by Goldman et al. (1967) for a spherical
particle above a solid wall. The circles and squares in figure 7(a) trace the graphs of
the computed linear and angular velocities reduced by the respective values for a solid
wall, plotted against the parameter (λ− 1)/(λ+ 1). The translational velocity exhibits
a strong dependence, whereas the angular velocity exhibits a mild dependence on the
viscosity ratio. As λ→ 0, the velocities tend to well-defined limits corresponding to
motion near a free surface.

The circles and squares in figures 7(b), 7(c) and 7(d) represent our numerical
results for viscosity ratios λ= 0.1, 1, and 10. For small distances from the interface,
the reduced rate of rotation for λ= 0.1 shown in panel (b) rises to become higher
than that in an infinite fluid, 2Ωz/k > 1. The numerical results for λ=10 shown
in panel (d) are in excellent agreement with the analytical predictions of Goldman
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Figure 6. Same as figure 5 but for λ = 0.01.

λ 0.1 0.5 1 2.3 5 10 50 100 500 1000 ∞

Vy/Uc 1.029 0.979 0.939 0.882 0.836 0.807 0.776 0.772 0.768 0.767 0.76692
2Ωz/k 0.722 0.731 0.740 0.752 0.763 0.770 0.778 0.779 0.780 0.780 0.77916

Table 2. Translational and rotational velocities of a freely suspended particle placed at a
distance xc/a = 1.1276 above the interface, listed as a function of the viscosity ratio; Uc is the
velocity of the unperturbed simple shear flow evaluated at the particle centre.

et al. (1967) represented by the asterisks and crosses, respectively, for the force and
torque, applicable in the limit λ→ ∞. These authors found that the ratios Vy/Uc

and 2Ωz/k both drop to zero when the particle is tangential to a wall, exhibiting a
sharp decline from the approximate values of 0.45 and 0.48 at yc/a = 1.003. Thus,
a spherical particle resting on the wall is immobilized by strong lubrication forces.
The present results demonstrate non-zero limits for finite viscosity ratios. To assess
whether a particle rolls over the interface without slipping, we examine whether the
limit of the ratio aΩz/Vy represented by the diamonds in figure 7 tends to unity as
yc → a. Goldman et al. (1967) found that this ratio tends to 0.5676 for flow over a
solid wall. Our results demonstrate lower values for finite viscosity ratios, revealing a
substantial slip velocity.
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Figure 7. (a) Velocity of translation (circles and dashed lines) and angular velocity of rotation
(squares and dotted lines) of a freely suspended particle located at the distance xc/a = 1.1276
above the interface. The symbols connected by lines show the present numerical results, and
the lines without symbols represent the asymptotic predictions of Yang & Leal (1984). The
velocities are scaled by the corresponding values for motion above a plane wall, λ = ∞.
(b–d) Reduced velocity of translation Vy/Uc (circles) and angular velocity of rotation 2Ωz/k
(squares) for (b) λ = 0.1, (c) 1, and (d) 10. In all graphs, the dotted and dashed lines without
symbols represent the asymptotic predictions for distant particles. The diamonds represent the
ratio aΩz/Vy , considered to assess whether a particle rolls or slips over the interface. In (d),
the asterisks and nearly coincident crosses represent the predictions of Goldman et al. (1967)
for Vy and Ωz, prevailing in the limit λ → ∞.

Lee, Chadwick & Leal (1979) and Yang & Leal (1984) determined the force and
torque exerted on a sphere executing rigid-body motion far from the interface in a
quiescent environment. Their predictions for a sphere translating along the y axis
with velocity Vy while rotating about the z axis with angular velocity Ωz are

Fy = −6πµaVy

(
1 −∆+∆2 −∆3 − 1 + 2λ

16(1 + λ)
δ3

)
− δ2 3πµa2

2(1 + λ)
Ωz(1 −∆) + O(δ4),

Tz = −δ2 3πµa2

2(1 + λ)
Vy(1 − ∆) − 8πµa3Ωz

(
1 +

δ3

16

5λ − 1

λ + 1

)
+ O(δ4).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(2.34)
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Figure 8. (a) A spherical particle straddling the interface between two immiscible viscous
fluids. (b) Typical discretization of the particle and interface contour in an azimuthal plane for
θ = 0.65π.

These asymptotic results complement the numerical results of Lee & Leal (1980) for
arbitrary particle positions. Combining (2.34) with (2.33) and imposing the condition
of zero force and torque, we may deduce the velocity of translation and angular
velocity of rotation of a freely-suspended particle by solving a system of two linear
equations. The asymptotic predictions represented by the dashed and dotted lines
without symbols in figure 7(a) provide only fair estimates due to the small separation
of the particle from the interface. The graphs in figure 7(b, c) for λ=0.1 and 1.0 show
that the asymptotic predictions are in good agreement with the numerical results for
large and moderate particle positions, whereas the graphs in figure 7(d) for λ= 10
show that the differences are significant even at large particle separations. The reason
is that, in the limit λ→ ∞, the asymptotic analysis does not capture the leading-order
correction to the force due to rotation or torque due to translation.

3. Particle embedded in an interface
In the second part of this paper, we consider the motion of a spherical particle

straddling the interface between two immiscible fluids in the presence of a simple
shear flow, as illustrated in figure 8. The level of particle penetration is determined by
the azimuthal angle θ measured around the particle centre in a meridional plane up
to the three-phase contact line, varying in the range [0, π], as shown in figure 8(a);
θ = π and 0 correspond, respectively, to a particle positioned in the upper or lower
fluid tangentially to the interface. If the fluids have equal densities and the particle is
neutrally buoyant, θ is determined by the contact angle at the three-phase contact line.
Under more general conditions, a curved meniscus develops around the contact angle,
and the angle θ is determined by the densities of the fluid and particle materials.
In our analysis, we will assume that all densities are equal and surface tension is
sufficiently strong to prevent significant interfacial deformation after the motion has
been established.
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3.1. Boundary integral formulation

We begin by developing the boundary integral representation for a translating,
rotating, and freely convected particle. The integral representation of the disturbance
velocity at a point x0 that lies in the upper fluid is

uD(x0) = − 1

8πµ1

S(x0, f D, P1) +
1

8π
D(x0, uD, P1)

− 1

8πµ1

S
(

x0, f D
1 , I

)
+

1

8π
D(x0, uD, I ), (3.1)

where P1 is the particle surface exposed to fluid 1. The reciprocal identity for the flow
in the lower fluid requires

0 = − 1

8πµ2

S(x0, f D, P2) +
1

8π
D(x0, uD, P2)

+
1

8πµ2

S
(

x0, f D
2 , I

)
− 1

8π
D(x0, uD, I ), (3.2)

where P2 is the particle surface exposed to fluid 2. Combining (3.1) and (3.2) to
formulate the jump in the traction across the interface, we find

uD(x0) = − 1

8πµ1

S(x0, f D, P ) +
1

8π
D(x0, uD, P1) +

λ

8π
D(x0, uD, P2)

− 1

8πµ1

S(x0, � f , I ) +
1 − λ

8π
D(x0, uD, I ). (3.3)

Since the stress field of the incident simple shear flow is common in both fluids, and
since the velocity satisfies λu∞,2 = u∞,1, we may write the reciprocal identity

0 = − 1

8πµ1

S(x0, f ∞, P ) +
1

8π
D(x0, u∞,1, P1) +

λ

8π
D(x0, u∞,2, P2). (3.4)

Combining the last two equations, we find

u(x0) = u∞,1(x0) − 1

8πµ1

S(x0, f , P ) +
1

8π
D(x0, u, P1) +

λ

8π
D(x0, u, P2)

− 1

8πµ1

S(x0, � f , I ) +
1 − λ

8π
D(x0, uD, I ), (3.5)

where the point x0 lies in the upper fluid. Working in a similar fashion for a point x0

that lies in the lower fluid we find an identical expression, except that the left-hand
side is multiplied by the viscosity ratio, λ.

To derive integral equations, we take the limit of (3.5) as the point x0 approaches
the upper particle surface, P1, and enforce the slip boundary condition to find

S(x0, f , P ) − µ1DPV (x0, u, P1) − λµ1D(x0, u, P2) + S(x0, � f , I )

− µ1 (1 − λ)D(x0, uD, I ) = −4πµ1[u(x0) − 2 u∞,1(x0)], (3.6)

where PV denotes the principal value of the double-layer integral. For a point x0

located at the lower part, P2, we find

S(x0, f , P ) − µ1D(x0, u, P1) − λµ1DPV (x0, u, P2) + S(x0, � f , I )

− µ1 (1 − λ)D(x0, uD, I ) = −4πλµ1[u(x0) − 2 u∞,2(x0)]. (3.7)
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Finally, for a point x0 located at the interface, we find

S(x0, f , P ) − µ1D(x0, u, P1) − λµ1D(x0, u, P2) + S(x0, � f , I )

+ 4πµ1(1 + λ)uD(x0) = 0. (3.8)

If the boundary conditions on the particle specify rigid-body motion (RBM), we
may use an integral identity to write

DPV (x0, uRBM , P1) = −4πuRBM (x0) + D(x0, uRBM , B),

D(x0, uRBM , P2) = −D(x0, uRBM , B),

}
(3.9)

when x0 lies on P1,

DPV (x0, uRBM , P2) = −4πuRBM (x0) − D(x0, uRBM , B),

D(x0, uRBM , P1) = D(x0, uRBM , B),

}
(3.10)

when x0 lies on P2, and

D(x0, uRBM , P1) = D(x0, uRBM , B) = 0,

D(x0, uRBM , P2) = −D(x0, uRBM , B) = 0,

}
(3.11)

when x0 lies on I , where B is the discoidal surface enclosed by the circular contact
line, and the normal vector n over B points into the upper fluid. Substituting in (3.6),
(3.7), and (3.8) to eliminate the integrals over the particles in favour of integrals over
the discoidal surface, we obtain

S(x0, f , P ) + S(x0, � f , I ) − µ1(1 − λ)D(x0, uD, I )

= µ1(1 − λ)D(x0, uRBM , B) − 8πµ1[uRBM (x0) − u∞,1(x0)], (3.12)

when x0 lies on P1,

S(x0, f , P ) + S(x0, � f , I ) − µ1 (1 − λ)D(x0, uD, I )

= µ1(1 − λ)D(x0, uRBM , B) − 8πλµ1[uRBM (x0) − u∞,2(x0)], (3.13)

when x0 lies on P2, and

S(x0, f , P ) + S(x0, � f , I ) + 4πµ1(1 + λ)uD(x0) = 0, (3.14)

when x0 lies on I . We have derived a system of integral equations for the traction
over the particle surface, the x-component of the traction over the interface, and the
tangential components of the disturbance velocity over the interface.

Now implementing the Fourier expansions as discussed in § 2, we obtain the one-
dimensional equations∫

CP

Ψαβ(x0, x)Fβ(x) dl(x) +

∫
CI

Ψαβ(x0, x)�Fβ(x) dl(x)

− µ1(1 − λ)

∫
CI

Kαδ(x0, x)VD
δ (x) dl(x) = µ1(1 − λ)

∫
CB

Kαδ(x0, x)VRBM
δ (x) dl(x)

− 8πµ1(−Ωzσ0δαx + W (x0)δασ + W (x0)δαϕ), (3.15)
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where the point x0 lies on P1 and W (x) = Vy +Ωz (x − xc) − u∞,1
y (x),∫

CP

Ψαβ(x0, x)Fβ(x) dl(x) +

∫
CI

Ψαβ(x0, x)�Fβ(x) dl(x)

− µ1(1 − λ)

∫
CI

Kαδ(x0, x)VD
δ (x) dl(x) = µ1(1 − λ)

∫
CB

Kαδ(x0, x)VRBM
δ (x) dl(x)

− 8πλµ1(−Ωzσ0δαx + W (x0)δασ + W (x0)δαϕ), (3.16)

where the point x0 lies on P2 and W (x) = Vy +Ωz (x − xc) − u∞,2
y (x), and∫

CP

Ψαβ(x0, x)Fβ(x) dl(x) +

∫
CI

Ψαβ(x0, x)�Fβ(x) dl(x) + 4πµ1 (1 + λ) VD
α (x0) = 0,

(3.17)

where the point x0 lies on I . The solution was found using the boundary element
method outlined in § 2. Figure 8(b) shows a typical particle contour discretization.

3.2. Results and discussion

When an axisymmetric particle with top–bottom symmetry translates normal to the
axis of revolution in an infinite homogeneous fluid, the shear stress vanishes over the
mid-plane. Accordingly, the two-phase flow, generated by the same particle translating
parallel to an interface that passes through the particle mid-plane, can be constructed
by properly adjusting the viscosities of the fluids in the upper and lower semi-infinite
space. When this adjustment is made, the flow field remains unaltered, the interfacial
shear stress remains zero, and the normal stress undergoes a discontinuity that is
proportional to the difference in the fluid viscosities, requiring high surface tension to
restore the flat shape. This construction by superposition emerges from the detailed
computations of Ranger (1978) for a circular disk of infinitesimal thickness straddling
a flat interface.

In the case of a spherical particle with a hemispherical part in each fluid, θ = π/2,
we use the well-known solution for Stokes flow due to a translating sphere (e.g.
Pozrikidis 1992), and find that the particle traction is given by the simple formula

fx = 0, fy = −3

2

µiVy

a
, fz = 0, (3.18)

where i = 1, 2, respectively, for the upper and lower fluid. The force and torque
exerted on the particle may be easily deduced,

Fy = −3πµ1Vya(1 + λ), Oz = −3

2
πµVya(1 − λ). (3.19)

The expression for the force was derived previously by Ranger (1978) using essentially
the same argument. When λ= 1, we recover Stokes’ law for translation in a
homogeneous fluid. Construction by superposition for particles with top–bottom
symmetry is also possible in the case of rotation about an axis that is normal
to the interface, and even when the Navier slip boundary condition is employed.
Confirmation is provided by the detailed analysis of O’Neill et al. (1986) for a sphere
straddling a gas-liquid interface, λ = 0.

The exact solution for θ = π/2 is borne out from our boundary integral
computations. Figure 9(a) illustrates the distribution of the interfacial traction and
velocity coefficients normalized, respectively, by µ1Vy/a and Vy , for θ = π/2 and λ=0.
Note that the normalized velocity coefficients take the value of unity at the particle
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Figure 9. Flow due to a translating spherical particle straddling a flat interface for θ = π/2
and λ = 0. (a) Distribution of the normalized interfacial traction coefficient FD

x (solid line),
and velocity coefficients VD

σ (dashed line), VD
ϕ (dotted line), plotted with respect to arclength

along the interface. (b) Deformed shape of the interface.

θ λ= 0 0.2 0.4 0.6 0.8 1

19π/20 −4.34, −2.614 −4.81, −2.13 −5.23, −1.72 −5.62, −1.36 5.97, −1.05 −6.30, −0.767
3π/4 −4.02, −1.18 −4.50, −1.17 −4.95, −1.12 −5.38, −1.05 −5.79, −0.959 −6.18, −0.854
π/2 −3.00, −1.50 −3.60, −1.20 −4.20, −0.90 −4.80, −0.600 −5.40, −0.300 −6.00, 0.000
π/4 −1.49, −1.18 −2.59, −0.528 −3.56, 0.097 −4.45, 0.253 −5.33, 0.565 −6.18, 0.854
π/20 −0.286, −0.354 −2.08, −0.458 −3.29, −0.285 −4.35, 0.005 −5.34, 0.364 −6.30, 0.767

Table 3. Dimensionless force, F̂ y ≡ Fy/(π1µVya) (first entry in each cell), and dimensionless
torque, T̂z ≡ Tz/(πµ1Vya

2) (second entry in each cell), exerted on a translating spherical particle
straddling an interface, listed as a function of the penetration angle, θ , and viscosity ratio, λ.

surface and drop off algebraically with distance over the interface, as predicted by the
exact solution for Stokes flow due to a translating sphere. Figure 9(b) illustrates the
deformed shape of the interface subject to the zero contact-angle boundary condition
at the particle surface. For clarity, the vertical interfacial displacement is displayed
on an exaggerated scale as a non-infinitesimal deformation. In this case, the interface
bulges downward into the vacuous lower space in front of the translating particle,
and upward behind the particle. In other cases, the converse is observed depending
on the viscosity ratio and level of particle penetration.

Table 3 shows the dimensionless force and torque exerted on the translating particle
for different penetration angles, θ , and viscosity ratios λ in the range [0, 1]. Results for
viscosity ratios higher than unity follow by switching the labels of the two fluids. The
results for θ = π/2 simply repeat the predictions of formulae (3.19). The predictions
for λ= 1 are consistent with the values displayed in figure 4 of Danov et al. (2000),
though an accurate comparison was prevented by the narrow plotting window of the
figure presented by these authors. The data shown in table 3 reveal that the drag force
always opposes the particle motion. However, the torque may be positive or negative
depending on the fluid viscosities and level of particle penetration. The relation
between the force and torque coefficients and the penetration angle or viscosity ratio
is not always monotonic.
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Figure 10. Shear flow past a stationary spherical particle straddling an interface for θ = π/2
and any value of λ. (a) Distribution of the particle traction coefficients Fx (solid line), Fσ

(dashed line), Fϕ (dotted line), with respect to arclength measured from the axis of symmetry

farthest from the wall. (b) Distribution of the normalized interfacial traction coefficient �FD
x

(solid line), and velocity coefficients VD
σ (dashed line), VD

ϕ (dotted line), plotted with respect
to arclength along the interface. (c) Deformed shape of the interface subject to the zero contact
angle boundary condition. The traction coefficients are normalized by µ1k1, and the velocity
coefficients are normalized by k1a.

Computations were performed for a particle held stationary in simple shear flow
parallel to the interface. When each fluid hosts a hemispherical part, θ = π/2, the
force on the particle is zero, and the torque is given by Tz = 4.88πµ1k1a

3, independent
of the viscosity ratio. As a reference, we note that the torque exerted on a sphere held
stationary in infinite homogeneous shear flow is Tz = 4πµ1k1a

3. The structure of the
flow is illustrated in figure 10.

This remarkable behaviour can be explained by realizing that the upper and lower
flows are identical to simple shear flow past a hemispherical protrusion embossed on
a plane wall. Indeed, the computed value of the torque is equal to twice that exerted
on the protrusion computed analytically by Price (1985) and verified numerically by
Pozrikidis (1997b). Because the ratio of the shear rates in the upper and lower space is
inversely proportional to the viscosity ratio, the shear stress is continuous across the
interface after superposition. However, because the sign of the pressure is different on
the upper and lower side of the interface, the normal stress undergoes a discontinuity
even for fluids of equal viscosity, requiring high surface tension to restore the flat shape.
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Figure 11. The same as figure 10 but for θ = π/4 and λ = 1.

The same behaviour is expected for axisymmetric particles with top–bottom
symmetry equally divided by the interface, including the flat disk. However, the
vanishing of the force does not imply that a freely suspended particle will rotate
without translating under the influence of the simple shear flow, for rotation induces
both a force and a torque in the case of unequal fluid viscosities. This simple
result for θ = π/2 does not extend to different penetration levels. As an example,
figure 11 illustrates the structure of the flow for θ = π/4 and λ=1. In this case,
the force and torque exerted on the particle are found to be Fy = −4.36πµ1k1a

2

and Tz = 4.10πµ1k1a
3. Changing the viscosity ratio to λ = 0.1 yields the significantly

different values Fy = −5.34πµ1k1a
2 and Tz = 5.24πµ1k1a

3.
Computations for a rotating sphere where the particle surface velocity has a

component normal to the interface around the contact line confirmed the onset of a
non-integrable singularity that frustrates the computation of the force, the torque, or
both, as discussed by O’Neill et al. (1986). Similar difficulties are encountered in the
case of a freely suspended particle convected under the influence of a simple shear
flow due to the rotary component of the particle motion.
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4. Discussion
We have computed the translational and angular velocities of a spherical particle

with arbitrary size in simple shear flow parallel to a planar interface, and demonstrated
their dependence on the particle distance from the interface and on the viscosity ratio.
The results of previous asymptotic analyses for remote particles were found to be
surprisingly accurate in the case of translation and rotation, and marginally accurate
in the case of free convection, especially for high viscosity ratios. The results of the
zeroth-order analysis for a flat interface were used to compute the deformation of
the interface to leading order with respect to the capillary number. A projection and a
depression were found to develop upstream and downstream from the particle centre
under all conditions.

In § 2 of this paper, we considered the force and torque exerted on a spherical
particle straddling a planar interface and translating parallel to an interface. Our
results confirmed a remarkably simple exact solution uncovered by Ranger (1978)
when the particle is immersed halfway in the two fluids. Numerical results were
presented for a range of viscosity ratios and particle penetration angles. The drag
force exerted on a translating straddling particle is necessary for computing the
interfacial diffusivity of small Brownian particles and compact molecules, as discussed
by O’Neill et al. (1986).

In the case of shear flow past a stationary particle, we have demonstrated that,
when the particle is immersed halfway between the two fluids, the flow can be
constructed in terms of the semi-infinite flow over a hemispherical protrusion on a
plane wall. Consideration of particle rotation around an axis that is parallel to the
interface and free convection in simple shear flow was discouraged by the onset of a
non-integrable singularity in the traction at the contact line, requiring regularization
by means of the slip boundary condition. Luo & Pozrikidis (2006) recently developed
an integral formulation that implements the Navier slip boundary condition, and
examined the effect of slip on the motion of a sphere near a plane wall. A similar
implementation for a particle straddling an interface will be considered in future
work.

Straddling marker particles are used to study interfacial rheology in the laboratory.
Small particles are desirable in that they prevent significant interfacial deformation,
but their motion is hard to observe through an immersed microscope. On the other
hand, larger particles cause appreciable deformation due to a meniscus developing
around the contact line, and this considerably raises the drag force (Professor K. D.
Danov, personal communication). A hydrodynamic analysis taking into account the
meniscus will further empower the experimental techniques. The computation of the
drag force for a curved interface corresponding to an axisymmetric meniscus will be
considered in future research.

The boundary integral method developed in this paper can handle arbitrary particle
shapes subject to the condition of rotational symmetry about an axis that is normal to
the interface. Examples include prolate and oblate spheroids and flat disks. However,
with the exception of the sphere and the zero-thickness disk, the axisymmetry is lost
when these particles tumble under the influence of a shear flow. Exceptions occur
when oblate particles are positioned at specific heights above the interface, where
they translate parallel to the interface without rotation, as has been shown to occur
above a plane wall (Pozrikidis 1994a). In a different extension, the method can be
applied to describe the motion of a spherical particle straddling a spherical interface
as implemented on the vesicle experiments of Velikov et al. (1997).
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